suleiman.saad74@yahoo.com
هل تريد التفاعل مع هذه المساهمة؟ كل ما عليك هو إنشاء حساب جديد ببضع خطوات أو تسجيل الدخول للمتابعة.

ادارة سليمان سعد (ريال مدريد اولا) (الفيصلي الزعيم)


أهلا وسهلا بك زائرنا الكريم, أنت لم تقم بتسجيل الدخول بعد! يشرفنا أن تقوم بالدخول أو التسجيل إذا رغبت بالمشاركة في المنتدى

النشاط الإشعاعي

اذهب الى الأسفل  رسالة [صفحة 1 من اصل 1]

1النشاط الإشعاعي Empty النشاط الإشعاعي الجمعة يناير 29, 2010 1:58 pm

Admin


Admin

النشاط الإشعاعي



النشاط الإشعاعي مصطلح يعبر عن العملية التي تطلق فيها الذرة الإشعاع أو الجسيمات الذرية أو الأشعة ذات الطاقة العالية من نواتها. يربو عدد الأنواع المختلفة من الذرات المعروفة على 2,300 نوع، والمشع منها يزيد على الألفي نوع، منها نحو50 نوعًا توجد في الطبيعة. أما البقية فقد استحدثها العلماء صناعيًا. ولقد اكتشف النشاط الإشعاعي، الفرنسي أنطوان هنري بكويريل في عام 1896م.


أنواع الإشعاع

توجد ثلاثة أنواع من الإشعاع النشط: جسيمات ألفا، وكان بكويريل أول من تعرف عليها؛ وجسيمات بيتا التي تعرف عليها النيوزيلندي إرنست رذرفورد؛ وأشعة جاما التي تعرف عليها الزوجان الفرنسيان ماري وبيير كوري.



جسيمات ألفا. تحمل شحنات كهربائية موجبة. ويتركب جسيم ألفا من بروتونين ونيوترونين، أي أنه يماثل نواة ذرة الهيليوم. تنطلق جسيمات ألفا بطاقات عالية، ولكنها سرعان ما تفقدها عند مرورها في المادة. وبمقدور ورقتين من أوراق هذه الموسوعة إيقافها.

جسيمات بيتا. وهي إلكترونات. تطلق بعض النوي المشعة إلكترونات عادية تحمل شحنات كهربائية سالبة. لكن البعض الآخر يطلق بوزيترونات وهي إلكترونات ذات شحنة موجبة. وتنتقل جسيمات بيتا بسرعة تقارب سرعة الضوء ويستطيع بعضها أن ينفذ خلال 13ملم من الخشب.

أشعة جاما. أشعة غير مشحونة كهربائيًا. وتشبه هذه الأشعة الأشعة السينية، إلا أنها تكون في الغالب ذات طولٍ موجي أصغر. وهذه الأشعة هي فوتونات (جسيمات الإشعاع الكهرومغنطيسي)، وتنتقل بسرعة الضوء. تخترق أشعة جاما الأجسام بدرجةٍ أكبر من جسيمات ألفا أو بيتا.




خواصُّ النَّوَى

لكي نفهم ما يحدث داخل ذرة مشعة، يجب علينا أن نتعرف على تركيب النواة. يسمى عدد البروتونات في نواة الذرة العدد الذري. ولكل عنصر عدد ذري مختلف. فالهيدروجين مثلاً له بروتون واحد، ولذا فإن عدده الذري 1، واليورانيوم عدده الذري 92 لأن نواته تحتوي على 92 بروتونًا.



ويسمى العدد الكلي من البروتونات والنيوترونات في نواة الذرة، العدد الكُتلي. وتحتوي نواة الهيدروجين العادي على بروتون واحد، وليس بها نيوترونات، ولذا فإن العدد الكتلي للهيدروجين العادي هو واحد. أما نواة الهيدروجين الثقيل، أي (الديوتريوم) فإنه يوجد بها بروتون واحد ونيوترون واحد، ولذا فإن عدده الكتلي 2. كما أن أحد الأنواع المشعة للهيدروجين والمسمى تريتيوم له العدد الكتلي 3، وذلك لأن به بروتونًا واحدًا ونيوترونين. ولكن الأنواع الثلاثة للهيدروجين لها نفس العدد الذري. وتسمى الذرات التي لها نفس العدد الذري ولها أعداد كتلية مختلفة النظائر. أي أن الهيدروجين العادي والديوتريوم والتريتيوم، كلها، نظائر لعنصر الهيدروجين، ويكتبها العلماء عادة 31H , 21H , 11H. ويمثل العدد الأسفل العدد الذري، في حين أن العدد الأعلى يمثل العدد الكتلي. وجميع نظائر أيِّ عنصر ذات خصائص كيميائية واحدة.


ابتعاث الإشعاع



تنشأ الأنواع المختلفة من الإشعاع في نوى الذرات المشعَّة. وما جسيم ألفا، المكوَّن من بروتونات ونيوترونات، إلا شَظيَّة من النواة التي أطلقته. أما إلكترون أشعة بيتا، فإنه ينشأ في النواة عندما يحدث تغيُّر لأحد الجسيمات فيها. وعندما تطلق الذرات إشعاع ألفا أو بيتا، فإنها تتغير إلى ذرات عناصر أخرى، يُسمِّي العلماء ذلك التغير التحوُّل أو التبدُّل. أما ابتعاث أشعة جاما فينتج عنه تحرر للطاقة فقط ولا يحدث بسببه تحوُّل.



إشعاع ألفا. إذا أُطلقت نواة جسيم ألفا، فإنها تفقد بروتونين ونيوترونين. وكمثال على ذلك، فإنَّ إشعاع ألفا ينطلق من اليورانيوم 238 وهو نظير لليورانيوم له 92 بروتونًا و146 نيوترونًا. وبعد فقدان جسيم ألفا، يصبح للنواة 90 بروتونًا و 144 نيوترونًا. لكنَّ الذرة التي لها العدد الذريّ 90 ليست ذرة يورانيوم بل ذرة ثوريوم. والنتيجة، إذن، هي تَكوُّن النظير ثوريوم 234.



إشعاع بيتا. عندما تُطلق نواة جسيم بيتا، فإنها تُطلق أيضًا نيوترينو مضاد وهو جسيم غير مشحون كتلته تكاد تكون منعدمة. وعندما ينطلق جسيم بيتا السالب يتحول النيوترون في النواة إلى بروتون وإلكترون سالب ونيوترينو مضاد. ينطلق الإلكترون والنيوترينو المضاد لحظة تكونهما، بينما يبقى البروتون في النواة. وهذا يعني أن بها بروتونًا زائدًا كما أن بها نيوترونًا ناقصًا. فمثلاً يطلق نظير للكربون 146C ، إلكترونات سالبة. وفي ذرة الكربون 14 أو(14C)، يوجد 6 بروتونات و8 نيوترونات. وعندما تتحول هذه النواة، يتغير نيوترون إلى بروتون وإلكترون ونيوترينو مضاد. وبعد ابتعاث الإلكترون والنيوترينو المضاد، تصبح النواة محتوية على سبعة بروتونات وسبعة نيوترونات. وهنا، فإن العدد الكتلِي ظل ثابتًا مع أن العدد الذري ازداد واحدًا. والنيتروجين هو العنصر الذي له العدد الذري 7. أي أن 146C تحول إلى 147N بعد انطلاق جسيم بيتا سالب.



وعندما تُطلق نواة بوزيترونًا، يتحوَّل البروتون في النواة إلى نيوترون وبوزيترون ونيوترينو. ينطلق كل من البوزيترون والنيوترينو لحظة تكوُّنهما، على حين أن النيوترون يظل في النواة. ويطلق أحد نظائر الكربون 116C بوزيترونات. ولهذا النظير 6 بروتونات و 5 نيوترونات، وعندما يطلق بوزيترونًا يتحوَّل أحد بروتونات النواة إلى نيوترون وبوزيترون ونيوترينو. وبعد انطلاق البوزيترون والنيوترينو، تظل النواة محتوية على 5 بروتونات و 6 نيوترونات. وهنا، فإن العدد الكتلي ظل ثابتًا على حين أن العدد الذري نقص بمقدار واحد. والبورون هو العنصر الذي رقمه الذري 5. أي أن 116C تغير إلى 115B بعد إطلاق بوزيترون ونيوترينو.

أشعة جاما. تنشأ أشعة جاما بطرق متعددة. فقد لا يحمل جسيم ألفا أو جسيم بيتا، المنطلق من النواة، كل الطاقة المتاحة. عندئذ، تكتسب النواة طاقة أكبر من تلك التي تجعلها مستقرة. وتتخلص النواة من الطاقة الزائدة بإطلاق أشعة جاما. لكن ابتعاث إشعاع جاما لا يصاحبه حدوث تحول.




نصف العمر

عدد الجسيمات المنطلقة من عينة نظير مشعّ في فترة زمنية هو نسبة مئوية محددة من عدد ذرات العينة. فمثلاً، ينحل من أي عينة من 11CC
3,5% منها كل دقيقة. فإذا بدأنا بعينة ما من 11C، فإنه لن يتبقى منها بعد أول دقيقة إلا 96,5%. وفي نهاية الدقيقة الثانية يتبقى 96,5% من العينة عند بدء هذه الدقيقة، أي 96,5% من 96,5% من العينة الأصلية، أي 93,1% من العينة الأصلية. وبعد عشرين دقيقة لن يبقى من الكمية الأصلية إلا نصفها فقط. وهذا معنى قولنا أن نصف عمر 11C
20 دقيقة. ويُسَمَّى هذا الفناء التدريجي للمادة الانحلال الإشعاعي أو التحوُّل النووي. وللنظائر المختلفة أنصاف أعمار مختلفة. ويتراوح نصف العمر من كسور من الثانية إلى بلايين السنين. وفيما عدا استثناءات قليلة، فإن النظائر المشعة الموجودة في الطبيعة بكميات يُمكن ملاحظتها هي فقط تلك التي لها نصف عمر يبلغ ملايين كثيرة من السنين، أو حتى بلايين السنين. ويعتقد العلماء أنه عندما تكوَّنت عناصر الأرض، كانت كلُّ النظائر الممكنة موجودة. وفي الغالب، تحللت تلك التي لها أنصاف أعمار قصيرة بحيث لم يبق منها إلا كميات أصغر من أن تلاحظ. ولكن بعض النظائر ذات العمر القصير، الموجودة في الطبيعة، تكوَّنت نتيجة انحلال نظائر مشعة طويلة العمر. فمثلاً، ينتج الثوريوم 234، الذي له نصف عمر قصير، من اليورانيوم الذي له نصف عمر طويل. كذلك تُنتج الأشعة الكونية، الكربون 14، وهو نظير نصف عمره قصير نسبيًّا. ومن النظائر المشعة ذات العمر الطويل الموجودة على الأرض، البوتاسيوم 40، والثوريوم 232، واليورانيوم 235، واليورانيوم 238.



ويُنتج المفاعل النووي صناعيا مئات النظائر المشعة قصيرة العمر، وذلك بإطلاق نيوترونات أو جسيمات نووية سريعة على النوى. فإذا أُطلق نيوترون أو جسيم آخر على نواة ذرة، يصبح من المحتمل أن تقوم النواة بأسر ما ارتطم بها. وفي بعض الأحيان تقوم النواة بأسر جسيم فيها ثم يلي ذلك مباشرة أن تقوم النواة بطرد أحد جسيماتها.





استخدامات النظائر المشعَّة



لمعرفة المزيد http://www.liilas.com/vb3/t72423.html#ixzzينتشر الإشعاع في الطبيعة نتيجة لمساهمة النظائر المشعة في بناء المادة المحيطة بنا, هذا بالإضافة إلى الإشعاعات التي تفد إلينا من الفضاء الخارجي.
فما هي هذه النظائر المشعة ومن أين أتت…؟

I- إنها ظاهرة النشاط الإشعاعي ....
كانت هذه الظاهرة وما ينتج عنها من إشعاعات موجودةً في الطبيعة قبل وجود الحياة على وجه الأرض بزمن طويل, بل ويعتقد أن الإشعاع كان أحد نواتج الانفجار الأعظم الذي صاحب خلق الله للكون منذ حوالي عشرين ألف مليون عام. اكتشف ظاهرة النشاط الإشعاعي العالم الفرنسي هنري بكرل عام 1896 ثم تلته العالمة البولونية ماري كوري التي تابعت العمل في هذا الطريق ،وهي التي اشتقت التعبير " النشاط الإشعاعي Radio Activity " للدلالة على مقدرة نوى بعض الذرات على التحول التلقائي إلى نوى أخرى, يرافق هذه العملية صدور أشعة عُرِفت وحُدِدت فيما بعد [1].
قبل اكتشاف هذه الظاهرة كانت غالبية العناصر الموجودة في الطبيعة المكونة للجدول الدوري مثل الأوكسجين والهيدروجين والنحاس والحديد والكبريت واليورانيوم معروفة, وكان يعتقد أنها تشكل اللبنات الأساسية في بناء الوجود المادي ، وأن لكل عنصر حالة واحدة يظهر بها تحدد خواصه الكيميائية والفيزيائية وتؤهله لاحتلال خانة معينة - دون غيرها – في هذا الجدول ، لكن اكتشاف هذه الظاهرة أكد وجود أكثر من حالة فيزيائية ( نووية ) لكل عنصر من العناصر سميت هذه الحالات " النظائر" .
والنظائر لعنصر واحد تحتل المكان نفسه في الجدول الدوري، فمثلاً للهيدروجين ثلاثة نظائر هي: التريتيوم والدوتيرريوم والهيدروجين تقع في الخانة الأولى من الجدول الدوري, وللأكسجين سبعة.
تختلف نظائر العنصر الواحد في خواصها النووية على الرغم من تطابق خواصها الكيميائية. من هنا جاء اهتمام علم الفيزياء النووية بالنظائر فيما يقابل اهتمام علم الكيمياء بالعناصر.
ترتبط التفاعلات الكيميائية وبالتالي الخواص الكيميائية للعناصر بإلكتروناتها بينما تتوقف الخواص النووية على تركيب النواة*.
* النواة هي ذلك الجزء الصغير من الذرة الذي يشغل حيزاً ( غالباً شكله كروي تقريباً ) أصغر من الجزء الذي تشغله الذرة بعشرة آلاف مرة, وتتألف من جسيمات صغيرة يطلق عليها " النيكلونات " وهي على نوعين, نوع يحمل شحنة كهربائية تدعى البروتونات وعددها يساوي عدد إلكترونات الذرة ويكتب دليل سفلي إلى أسفل يسار الرمز الكيميائي, والثاني غير مشحون - فهي إذن معتدلة كهربائياً - وتدعى النيترونات, يضاف عددها إلى عدد البروتونات ليشكلا معاً العدد الكتلي ويكتب دليل علوي إلى أعلى يسار الرمز الكيميائي, وذلك للدلالة على النظير ,وقد يكتب بجوار اسم النظير, فنقول الهيدروجين 1 و الهيدروجين 2 والهيدروجين 3 , للدلالة على أي من نظائر الهيدروجين.

تصنف النظائر عامة تحت عنوانين اثنين :
الأول : " نظائر مستقرة " وهي لا تتغير أبداً وتشكل غالبية العناصر الموجودة في الطبيعة وتكون نسبتها إلى بعضها من أجل عنصر محدد ثابتة .
الثاني : " غير مستقرة أو مشعة " وهي أقل وفرة في الطبيعة من النظائر المستقرة, ويرجع سبب عدم استقرارها لوجود طاقة زائدة داخل نوى ذراتها ما يجعلها تسعى دائماً وبشكل تلقائي للتخلص من هذه الطاقة، وعندما تطلقها أو تطلق جزءاً منها نقول أنها تفككت أو اضمحلت، وبالنتيجة تنتقل نواة الذرة من حالة إلى حالة أخرى إذا أصدرت أشعة غاما أو أنها تتحول إلى نظير آخر إذا أطلقت أشعة ألفا أو أشعة بيتا .
ولقد اكتسبت بعض هذه النظائر شهرة فائقة للاستفادة منها في الأغراض السلمية في أكثر من مجال: تستخدم في الطب لمعالجة بعض الأمراض مثل اليود المشع وفي الزراعة للحفاظ على الأغذية وفي مجال الصناعة للحصول على الطاقة الكهربائية مثل اليورانيوم [ 4 ].
للدلالة عن الزمن اللازم لإنجاز هذا التحول أدخل مفهومي العمر الوسطي τ وعمر النصف .
أما الإشعاعات الناتجة وهي أشعة ألفا أو بيتا أو غاما فلكل منها خواصها الفيزيائية المحددة
أشعة ألفا : وهي نوى ذرات الهليوم أي أنها موجبة , تمتلك قدرة فائقة على تأيين ذرات أخرى, لكنها ضعيفة يمكن حجبها بقطعة من الورق المقوى أو برقيقة من الألمنيوم سمكها 0.06 ملم .
أشعة بيتا : وهي على نوعين سالبة ( إلكترونات ) وموجبة ( بوزترونات ) أقل مقدرة على التأيين لكنها أقدر على اختراق الأجسام فنحن بحاجة إلى رقيقة من الألمنيوم سمكها 3 ملم لحجبها .
أشعة غاما : تمتاز بقدرتها على اختراق الأجسام ولحجبها نحتاج صفيحة من الحديد سمكها 30سم.
وهكذا فإن مقدرة المواد على إضعاف الأشعة أو حجبها مختلف, وهذا ما يوضحه الشكل ( 1 ).
تقاس طاقة الأشعة بوحدة تدعى " المليون إلكترون فولط " والجدير ذكره أن العلاقة بين سمك المادة الحاجبة ( الموقفة ) للأشعة وطاقة هذه الأشعة ليست خطية, بمعنى أنه إذا احتجنا صفيحة من الرصاص سمكها 10سم لحجب أشعة ( ؟ ) من نوع معين طاقتها 2 مليون إلكترون فولط فليس بالضرورة أن يكون سمك صفيحة الرصاص المناسبة لحجب أشعة من النوع نفسه طاقتها 8 مليون إلكترون فولط مساوياً 40 سم. أما الشدة الإشعاعية ( عدد النوى المتفككة خلال وحدة الزمن ) لعينة مشعة ما فتقاس بوحدة تدعى " الكوري " [ 1 ].



الشكل ( 1 ) : نرى فيه تمثيلاً بيانياً يوضح اختلاف سمك الصفيحة المستخدمة لإضعاف أشعة غاما طاقتها MeV1.25 إلى عشر قيمتها الأصلية باختلاف المعدن.

عندما تصطدم هذه الأشعة – أياً كان نوعها– بطاقة مناسبة بالمادة فإنها تتفاعل معها محدثة تغيرات فيها. تبدأَُ هذه التغيرات من رفع درجة حرارة الجسم وتنتهي بتغيير تركيب نوى بعض ذراته, يطلق على هذه العملية التأثير المتبادل بين الإشعاعات والمادة [ 2 ].
يتراوح عمر النصف للنظائر بين ( ) ( أي ثلاثة أجزاء من الميكرو ثانية ) للنظير ( ) و ( سنة ) ( 14 مليار عام ) لليورانيوم 238 ويصل إلى ( سنة ) للنظير 204 للرصاص .
وهكذا نجد أنه يوجد في الطبيعة نظائر عمر النصف لها أطول من العمر الافتراضي للأرض الذي يقدر بحوالي ( عام ) (مائة مليون عام ) أهمها اليورانيوم ( ) والثوريوم ( ) والأكتينيوم ( الأكتينيويورانيوم ) ( ) .
يتفكك كل من هذه النظائر متحولاً إلى آخر نشط – ينتج عن كل تحول أشعة ألفا أو أشعة بيتا السالبة - وهكذا إلى أن نصل في النهاية إلى نظير مستقر هو أحد نظائر الرصاص. قد يصل عدد هذه النظائر الناتجة عن تفكك نظير محدد إلى خمس عشر نظيراً فتشكل معاً ما يسمى " سلسلة إشعاعية " (أسرة إشعاعية) يكون النظير الأول هو الجد الأكبر في السلسلة [ 1 ].
تعتبر السلسلتين الأولى والثانية المصادر الأهم للإشعاع الأرضي في الطبيعة, أما السلسلة الأخيرة فهي أقل أهمية لأن الجد الأكبر لها نادر الوجود في الطبيعة. يضاف إلى هاتين السلسلتين بعض النظائر المشعة الهامة لأنها تتشكل باستمرار في الطبيعة:
- البوتاسيوم ( ) ( ) .
- الكربون ( ) ( ) يتشكل من تفاعل الإشعاع الكوني مع الغلاف الجوي للأرض .
- التريتيوم ( ) ( ) زادت نسبته بعد عام 1952 بسبب التفجيرات التي صاحبت اختبار الأسلحة النووية .
يتواجد اليورانيوم في الطبيعة بتراكيب كيميائية مختلفة الجدول ( I ) وفي مواقع جيولوجية متنوعة, ويتواجد الثوريوم في رسوبيات المونازيت. تذوب بعض هذه المركبات الكيميائية في الظروف الطبيعية بالماء فتنتقل من فلذاتها وتسير مع الماء إلى الأنهار لتصب في البحار والمحيطات مما يؤدي إلى ارتفاع نسبة الإشعاع على طول مجرى النهر وعند المصب ، وذلك بسبب تفاعل الأشعة الناتجة عن التفكك مع نوى ذرات النظائر المستقرة التي تصادفها وتتفاعل [ 4 ] معها محولة إياها إلى نظائر نشطة تساهم في زيادة نسبة الإشعاع في الطبيعة في تلك المناطق.

II - الأشعة الكونية :
وهي الأشعة التي تفد إلينا من الفضاء الخارجي ومصدرها المجرات والشمس، وتقسم إلى ثلاثة أنواع:
– الأشعة الكونية الأولية: وتتألف من 87 % بروتونات و 12 % جسيمات ألفا و1 % نوى عناصر ثقيلة مثل الكربون والأكسجين والنتروجين والكالسيوم والحديد ، وتتواجد على ارتفاع 50 كم فأكثر وتقل كثافتها كلما اقتربنا من سطح الأرض.
– الأشعة الكونية الثانوية: وهي نتاج تفاعل الأشعة الكونية الأولية مع الغلاف الجوي للأرض ، وتتألف من فوتونات (إشعاع كهرطيسي ) وإلكترونات و بروتونات ونيترونات, وتزداد كثافتها كلما اقتربنا من سطح الأرض, فهي تتواجد على ارتفاع 20 كم فأقل . وفيما بين هذين الارتفاعين نجد خليطاً من نوعي الأشعة .
- الأشعة الشمسية : وهي عبارة عن بروتونات تتدفق خارجة من الشمس عقب انبعاث توهجات نيرا نية تظهر على هيئة لسان كبير من سطحها, جزء من هذه الأشعة تكون طاقته كبيرة بحيث تكفي لإحداث تغيرات على سطح الأرض يمكن كشفها.
تشكل الأشعة بشقيها الأرضية والكونية " الخلقية الإشعاعية" التي تعبر عن مستوى ( معدل)الإشعاع في الطبيعة ، وهو يختلف باختلاف المنطقة والموقع والزمن . لمعرفة تأثير هذه الأشعة وضعت تعاريف وأدخلت وحدات تسهل تناول هذا الموضوع أهمها :
-" الجرعة الممتصة " وهي تعبر عن الطاقة المنتقلة إلى وحدة الكتل من المادة المنقولة إليها وتقاس " بالغري " (GY).
-" مكافئ الجرعة " الذي يصف التأثير البيولوجي لنوع معين من الأشعة على نوع محدد من المادة أو العضو ويقاس " بالسيفرت " (SV).
ويشار إليهما "بالجرعة " اختصاراً وتبقى الوحدة هي المميز لنوع الجرعة.

0YSnumyMF

https://suleiman.arabepro.com

الرجوع الى أعلى الصفحة  رسالة [صفحة 1 من اصل 1]

صلاحيات هذا المنتدى:
لاتستطيع الرد على المواضيع في هذا المنتدى